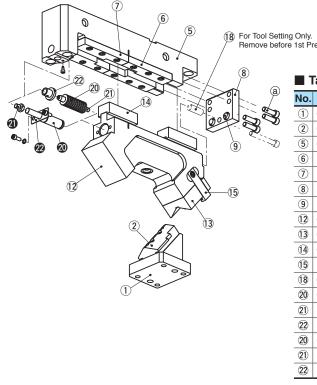

LONG BODY CAM **AERIAL CAM UNIT**

Easier to work on hard-to-reach areas

- Long reach of cam slider avoids any contact with panel being processed
- Reduced processing time due to less space limitations
- Sufficient space for scrap removal
- Easier disassembly of cam slider



Application Example

Technical Information

SACLB80 Assembly/ Dis-assembly

Remove before 1st Press Cycle.

No.	Description	Qty
1	Cam Driver	1
2	Cam Bottom Guide Plate	1
(5)	Cam Holder	1
6	Upper Plate A	2
\bigcirc	Upper Plate B	2
8	Stopper Plate	1
9	Urethane Stopper	2
12	Cam Slider	1
13	Cam Bottom Slide Guide	1
14	Cam Lower Slider	2
15	Positive Return plate	2
18	Collar	1
20	Coil Spring	1
21)	Spring Guide Pin	1
22	Spring Guide Washer	1
20	Gas Spring	1
21)	Stop Pin	1
22	Spring Stopper	1

NEW

Disassembling SACLB80

1) Remove the Hexagonal Socket Head Bolts (a) to pull out the Stopper Plate (a). 2) Slide the Cam Slider ((12)) back to the corresponding notch placed between (6) and (7). 3) Pull up the Cam Slider(12) from the Cam Holder(5).

Re-assembly

Reassembly is the reverse procedure of disassembling.

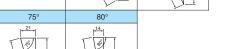
- NOTE: OEnsure that all parts are clean, particularly the sliding components to which a small amount of grease is applied and is then placed in position.
 - Take care that the respective tolerances are observed when assembling the Cam Slider and Cam Holder, which also should be identified by the same serial number.
 - Make sure that all bolts are tighten to the recommended torque after assembly and dis-assembly.

Gas Spring

Please contact your local sales representative if you prefer to use a gas spring not specified in our catalog. For use and maintenance of gas spring, please contact the manufacturer directly.

690

Copyright C Sankyo Oilless Industry, Inc. All Rights Reserved.


Copyright © Sankyo Oilless Industry, Inc. All Rights Reserved.

LONG BODY CAM **AERIAL CAM UNIT**

SACLB80 520 470 ± 0.02 465 25 ± 0.05 ٩ 61 00 0 ٩ <u>2-#16H7</u> 25H7 $180{\scriptstyle\,\pm 0.05}$ 4-#18-#26 42 4 ۲ O 85 1.SS 320 0 35 ର ର Backup 450 120 75 <u>20</u> $\underline{50} \pm 0.05$ • ÷ 130 100 94±0.02 **O** t) θ SS Α <u>2-#16H7/</u> 4-#13-#20 50° 43 156.8 55° 160.8 40 38 60° 33 163.8 65° 34 21 167.8 70° 28 10 168.8 75° 21 5 170.8 80° 14 0 169.9

The coil springs is durable until 300.000 strokes

										NEW		
Working force [kN (tonf)] 1,000,000 strokes			Catalog No.		am width W		gle 9	S	Spring Type PS			
58.8(6.0)			SACLB		80	50~80 (5-degree increments)		No Code (Coil Spring) GK NGK GD NGD GS NGS				
	GK	Code : C : Gas S tion				is Spring (DAD s Spring (SDT)) Mo	unting h		out Gas Spri or gas sprin space	0	
Opti	on Code	•		Specif	n							
NF K			Nitrogen gas not charged. Key attached. (LKU25-100)									
	Ord pring pil sprin	ler force ng spe	SAC SAC			W [80 80		_ (PS – GK – specifica		- K	
• Co	pring oil spring Stroke	force ng spe Initia	SAC SAC cificat	CLB CLB ion Final		80 — 80 — Model	50 50 • Gas s Final	- (spring load	GK – specifica	NF – ation odel Spri	- K	
• Co Angle	pring	ler force ng spe	SAC SAC	CLB CLB ion	load kgf	80 — 80 — Model Spring	50 50 • Gas s	_ (GK – specifica M GK	NF – ation odel Spri	- K ing GS	
• Co	pring oil spring Stroke	force ng spe Initia	SAC SAC cificat	CLB CLB ion Final	kgf	80 — 80 — Model	50 50 • Gas s Final N	spring load kgf	GK	NF – ation odel Spri	- K ing GS SFC.320.5 SFC.320.5	
• Co Angle 50 55	pring oil sprin Stroke SS	force ng spe Initia N	SAC SAC cificat load kgf 45.0	CLB CLB ion Final N	kgf 269.8	80 80 Spring TH30-200 TH30-200	50 50 • Gas s Final N 2726.0	spring load kgf 278.2	GK specifica M GK X320-50 X320-50 X320-50	NF	- K ing GS SFC.320.5 SFC.320.5 SFC.320.5	
• Co Angle 50 55 60	pring pil sprin Stroke SS 40	force ng spe Initia N 440.7	SAC SAC cificat load kgf 45.0	CLB CLB ion Final 2644.3 2644.3	kgf 269.8 269.8	80 80 Model Spring TH30-200 TH30-200 TH30-200	50 50 • Gas s Final N 2726.0	spring load kgf 278.2 263.3	GK specifica M GK X320-50 X320-50 X320-50 X320-50 X320-50	NF ation odel Spri U.0325.050 U.0325.050 U.0325.050	- K ing SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.5	
 Co Angle 50 55 60 65 	pring pil sprin Stroke SS 40 34	force ng spe Initia N 440.7 503.7	SAC SAC cificat load kgf 45.0 51.4	ion Final 2644.3	kgf 269.8	80 80 80 TH30-200 TH30-200 TH30-200 TH30-175	50 50 • Gas s Final N 2726.0 2580.0 2653.0	- (spring load kgf 278.2 263.3 270.7	GK – specificz M GK X320-50 X320-50 X320-50 X320-50 X320-38	NF ation odel Spri U.0325.050 U.0325.050 U.0325.050 U.0325.050 U.0325.050	- K SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.3	
 Co Angle 50 55 60 65 70 	pring oil sprin Stroke SS 40 34 28	force ng spe Initia N 440.7 503.7 587.7	SAC SAC cificat load kgf 45.0 51.4 60.0	CLB CLB ion Final 2644.3 2644.3	kgf 269.8 269.8	80 - 80 - 80 - TH30-200 TH30-200 TH30-200 TH30-175 TH30-150	50 50 • Gas s Final N 2726.0 2580.0 2653.0 2744.0	- (spring load kgf 278.2 263.3 270.7 280.0	GK – specifica M GK X320-50 X320-50 X320-50 X320-50 X320-38 X320-25	NF	- K sFC.320.5 SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.3 SFC.320.3 SFC.320.2	
 Contract Angle 50 55 60 65 70 75 80 	spring bil sprin Stroke SS 40 34 28 21	force ng spe Initia N 440.7 503.7 587.7 330.6 587.6	SAC SAC Cificat Ioad 45.0 51.4 60.0 33.7 60.0	Final 2644.3 2644.4 2644.4	kgf 269.8 269.8 269.9 269.8 269.8 Cam Di	80 80 80 80 90 90 1130-200 1130-200 1130-200 1130-175 1130-175 1130-150 1130-100 1130-75 agram	50 50 ● Gas s Final N 2726.0 2580.0 2653.0 2744.0 2585.0	spring load kgf 278.2 263.3 270.7 280.0 263.8	GK – specifica M GK X320-50 X320-50 X320-50 X320-50 X320-25 X320-25 X320-19 The gas fi	NF	- K sFC.320.5 SFC.320.5 SFC.320.5 SFC.320.3 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2	
 Contract Angle 50 55 60 65 70 75 80 	spring poil sprin Stroke SS 40 34 28 21 14 Veight	force ng spe Initia N 440.7 503.7 587.7 330.6 587.6	SAC SAC cificat load kgf 45.0 51.4 60.0 33.7	Final 2644.3 2644.4 2644.4	kgf 269.8 269.8 269.9 269.8 269.9 269.8 Cam Di	80 – 80 – 80 – TH30-200 TH30-200 TH30-200 TH30-175 TH30-150 TH30-100 TH30-75	50 50 ● Gas s Final N 2726.0 2580.0 2653.0 2744.0 2585.0	- (spring load kgf 278.2 263.3 270.7 280.0 263.8	GK – specifica M GK X320-50 X320-50 X320-50 X320-50 X320-50 X320-50 X320-19 *The gas fi	NF	- K sFC.320.5 SFC.320.5 SFC.320.5 SFC.320.3 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2	
 Contract Angle 50 55 60 65 70 75 80 	40 Stroke SS 40 34 28 21 14 Veight Slide	force ng spe Initia N 440.7 503.7 587.7 330.6 587.6 str.6	SAC SAC cificat load 45.0 51.4 60.0 33.7 60.0	Final 2644.3 2644.4 2644.4	kgf 269.8 269.8 269.9 269.8 269.8 269.8	80 – 80 – 80 – TH30-200 TH30-200 TH30-200 TH30-175 TH30-150 TH30-150 TH30-150 TH30-75 agram	50 50 ● Gas s Final N 2726.0 2580.0 2653.0 2744.0 2585.0 ** **	- (spring load kgf 278.2 263.3 270.7 280.0 263.8	GK – specifica M GK X320-50 X320-50 X320-50 X320-50 X320-50 X320-50 X320-19 *The gas fi	NF	- K sFC.320.5 SFC.320.5 SFC.320.5 SFC.320.3 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2	
● Ccc Angle 50 55 60 65 70 75 80 ■ W Angle	spring bil sprin Stroke SS 40 34 28 21 14 Veight Veight	force ng spe Initia N 440.7 503.7 587.7 330.6 587.6 587.6 587.6 4 4 6 9 6	SAC SAC SAC Cificat I load 45.0 51.4 60.0 33.7 60.0	Final 2644.3 2644.4 2644.4	kgf 269.8 269.8 269.9 269.8 269.9 269.8 Cam Di	80 – 80 – 80 – TH30-200 TH30-200 TH30-200 TH30-175 TH30-150 TH30-150 TH30-150 TH30-75 agram	50 50 ● Gas s Final N 2726.0 2580.0 2653.0 2744.0 2585.0	- (spring load kgf 278.2 263.3 270.7 280.0 263.8	GK – specifica M GK X320-50 X320-50 X320-50 X320-50 X320-50 X320-50 X320-19 *The gas fi	NF	- K sFC.320.5 SFC.320.5 SFC.320.5 SFC.320.5 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.2 SFC.320.5 SFC.320.7 SFC.32	

Copyright © Sankyo Oilless Industry, Inc. All Rights Reserved.

В

65

70

75

80

25.3

25.3

25.1

25.0

62.4

62.5

62.7

62.9

70°

28